3.4.92 \(\int \frac {x}{\sqrt {1+c^2 x^2} (a+b \sinh ^{-1}(c x))} \, dx\) [392]

Optimal. Leaf size=54 \[ -\frac {\text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{b c^2}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c^2} \]

[Out]

cosh(a/b)*Shi((a+b*arcsinh(c*x))/b)/b/c^2-Chi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {5819, 3384, 3379, 3382} \begin {gather*} \frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \sinh ^{-1}(c x)}{b}\right )}{b c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

-((CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(b*c^2)) + (Cosh[a/b]*SinhIntegral[(a + b*ArcSinh[c*x])/b])
/(b*c^2)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )} \, dx &=\frac {\text {Subst}\left (\int \frac {\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=\frac {\cosh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=-\frac {\text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac {a}{b}\right )}{b c^2}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{b c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 46, normalized size = 0.85 \begin {gather*} -\frac {\text {Chi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac {a}{b}\right )-\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\sinh ^{-1}(c x)\right )}{b c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

-((CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] - Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(b*c^2))

________________________________________________________________________________________

Maple [A]
time = 2.80, size = 58, normalized size = 1.07

method result size
default \(\frac {{\mathrm e}^{\frac {a}{b}} \expIntegral \left (1, \arcsinh \left (c x \right )+\frac {a}{b}\right )}{2 c^{2} b}-\frac {{\mathrm e}^{-\frac {a}{b}} \expIntegral \left (1, -\arcsinh \left (c x \right )-\frac {a}{b}\right )}{2 c^{2} b}\) \(58\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/c^2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)-1/2/c^2/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x/(a*c^2*x^2 + (b*c^2*x^2 + b)*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \sqrt {c^{2} x^{2} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*asinh(c*x))/(c**2*x**2+1)**(1/2),x)

[Out]

Integral(x/((a + b*asinh(c*x))*sqrt(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x}{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {c^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)),x)

[Out]

int(x/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)), x)

________________________________________________________________________________________